Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Acc Chem Res ; 57(9): 1287-1297, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38626119

RESUMO

ConspectusThe growing list of physiologically important protein-protein interactions (PPIs) has amplified the need for compounds to target topologically complex biomolecular surfaces. In contrast to small molecules, peptide and protein mimics can exhibit three-dimensional shape complementarity across a large area and thus have the potential to significantly expand the "druggable" proteome. Strategies to stabilize canonical protein secondary structures without sacrificing side-chain content are particularly useful in the design of peptide-based chemical probes and therapeutics.Substitution of the backbone amide in peptides represents a subtle chemical modification with profound effects on conformation and stability. Studies focused on N-alkylation have already led to broad-ranging applications in peptidomimetic design. Inspired by nonribosomal peptide natural products harboring amide N-oxidations, we envisioned that main-chain hydrazide and hydroxamate bonds would impose distinct conformational preferences and offer unique opportunities for backbone diversification. This Account describes our exploration of peptide N-amination as a strategy for stabilizing canonical protein folds and for the structure-based design of soluble amyloid mimics.We developed a general synthetic protocol to access N-amino peptides (NAPs) on solid support. In an effort to stabilize ß-strand conformation, we designed stitched peptidomimetics featuring covalent tethering of the backbone N-amino substituent to the preceding residue side chain. Using a combination of NMR, X-ray crystallography, and molecular dynamics simulations, we discovered that backbone N-amination alone could significantly stabilize ß-hairpin conformation in multiple models of folding. Our studies revealed that the amide NH2 substituent in NAPs participates in cooperative noncovalent interactions that promote ß-sheet secondary structure. In contrast to Cα-substituted α-hydrazino acids, we found that N-aminoglycine and its N'-alkylated derivatives instead stabilize polyproline II (PPII) conformation. The reactivity of hydrazides also allows for late-stage peptide macrocyclization, affording novel covalent surrogates of side-chain-backbone H-bonds.The pronounced ß-sheet propensity of Cα-substituted α-hydrazino acids prompted us to target amyloidogenic proteins using NAP-based ß-strand mimics. Backbone N-amination was found to render aggregation-prone lead sequences soluble and resistant to proteolysis. Inhibitors of Aß and tau identified through N-amino scanning blocked protein aggregation and the formation of mature fibrils in vitro. We further identified NAP-based single-strand and cross-ß tau mimics capable of inhibiting the prion-like cellular seeding activity of recombinant and patient-derived tau fibrils.Our studies establish backbone N-amination as a valuable addition to the peptido- and proteomimetic tool kit. α-Hydrazino acids show particular promise as minimalist ß-strand mimics that retain side-chain information. Late-stage derivatization of hydrazides also provides facile entry into libraries of backbone-edited peptides. We anticipate that NAPs will thus find applications in the development of optimally constrained folds and modulators of PPIs.


Assuntos
Peptídeos , Alquilação , Peptídeos/química , Peptídeos/síntese química
2.
Subst Use Misuse ; 59(8): 1261-1270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38503716

RESUMO

Background: The COVID-19 pandemic has accelerated and amplified the use of virtual research methods. While online research has several advantages, it also provides greater opportunity for individuals to misrepresent their identities to fraudulently participate in research for financial gain. Participant deception and fraud have become a growing concern for virtual research. Reports of deception and preventative strategies have been discussed within online quantitative research, particularly survey studies. Though, there is a dearth of literature surrounding these issues pertaining to qualitative studies, particularly within substance use research. Results: In this commentary, we detail an unforeseen case study of several individuals who appeared to deliberately misrepresent their identities and information during participation in a virtual synchronous qualitative substance use study. Through our experiences, we offer strategies to detect and prevent participant deception and fraud, as well as challenges to consider when implementing these approaches. Conclusions: Without general awareness and protective measures, the integrity of virtual research methods remains vulnerable to inaccuracy. As online research continues to expand, it is essential to proactively design innovative solutions to safeguard future studies against increasingly sophisticated deception and fraud.


Assuntos
COVID-19 , Enganação , Fraude , Pesquisa Qualitativa , Transtornos Relacionados ao Uso de Substâncias , Humanos , Fraude/prevenção & controle , COVID-19/prevenção & controle , Transtornos Relacionados ao Uso de Substâncias/prevenção & controle
3.
Org Lett ; 25(23): 4366-4370, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37276840

RESUMO

The identification of unnatural residues that stabilize polyproline type 2 (PPII) folds can aid in the design of peptidomimetics targeting PPII-binding domains. Here, we examine the impact of peptide backbone N-amination on PPII helix stability and find N-aminoglycine (aGly) to be an effective PPII promoter. Further derivatization of an aGly-containing peptide affords N'-alkylated analogues with increased helical propensity. Backbone N-amination of glycine represents a convenient approach to stabilize PPII conformation and allows for the diversity-oriented synthesis of optimally constrained folds.


Assuntos
Peptídeos , Peptidomiméticos , Peptídeos/química , Estrutura Secundária de Proteína
4.
Cannabis Cannabinoid Res ; 8(3): 408-413, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36730769

RESUMO

Background: Δ9-Tetrahydrocannabinol (THC) is the psychoactive component in cannabis and a relationship of THC to driving impairment is expected. Despite this, there are discrepant findings with respect to the relationship of blood THC to driving. This study investigated the relationship of blood, urine, and saliva THC/THC-COOH levels to "weaving," as measured by a driving simulator. Methods: Participants smoked cannabis alone or with alcohol. THC/THC-COOH levels in blood, urine, and saliva were correlated with standard deviation of lateral position (SDLP), measuring "weaving." In addition, SDLP after cannabis and/or alcohol were compared with SDLP after placebo when THC/THC-COOH levels were above or below specified thresholds in blood (5 ng/mL), urine (50 ng/mL), or saliva (25 ng/mL). Results: A clear linear relationship between blood THC concentration and SDLP was not observed based on calculation of Spearman coefficients. When compared with placebo, SDLP was significantly increased after cannabis and cannabis combined with alcohol when THC in the blood was above the legal limit. SDLP was increased in drug conditions when saliva cutoffs were above the legal limit. Conclusions: The findings of this study suggest that specified thresholds for THC in blood and saliva may be able to detect driving impairment, but future studies are needed. ClinicalTrials.gov ID: NCT03106363.


Assuntos
Cannabis , Alucinógenos , Humanos , Dronabinol , Saliva , Etanol , Agonistas de Receptores de Canabinoides
5.
Brain Behav Immun ; 107: 369-382, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336207

RESUMO

Microglia may only represent 10% of central nervous system (CNS) cells but they perform critical roles in development, homeostasis and neurological disease. Microglia are also environmentally regulated, quickly losing their transcriptomic and epigenetic signature after leaving the CNS. This facet of microglia biology is both fascinating and technically challenging influencing the study of the genetics and function of human microglia in a manner that recapitulates the CNS environment. In this review we provide a comprehensive overview of existing in vitro and in vivo methodology to study human microglia, such as immortalized cells lines, stem cell-derived microglia, cerebral organoids and xenotransplantation. Since there is currently no single method that completely recapitulates all hallmarks of human ex vivo adult homeostatic microglia, we also discuss the advantages and limitations of each existing model as a practical guide for researchers.


Assuntos
Epigenômica , Humanos
6.
Artigo em Inglês | MEDLINE | ID: mdl-35551928

RESUMO

Co-use of alcohol and cannabis is associated with increased frequency and intensity of use and related problems. This study examined acute effects of alcohol and cannabis on mood, subjective experience, cognition, and psychomotor performance. Twenty-eight healthy cannabis users aged 19-29 years with recent history of binge drinking completed this within-subjects, double-blind, double-dummy, placebo-controlled, randomized clinical trial. Participants received: placebo alcohol and placebo cannabis (<0.1% THC); alcohol (target breath alcohol content [BrAC] 80 mg/dL) and placebo cannabis; placebo alcohol and active cannabis (12.5% THC); and active alcohol and cannabis over four sessions. Profile of Mood States (POMS), Addiction Research Centre Inventory (ARCI), verbal free recall (VFR), Digit Symbol Substitution Test (DSST), Continuous Performance Test (CPT), and grooved pegboard (GPB) task were administered before and approximately 75 min after drinking alcohol (1 h after smoking cannabis ad libitum). Significant effects of condition were found for the POMS (Tension-Anxiety, Confusion) and ARCI (MBG, LSD, PCAG, Euphoria, Sedation), predominantly with greater increases emerging after cannabis or alcohol-cannabis combined relative to placebo. Significant effects were found for VFR (immediate total and delayed recall, percent retained), DSST (trials attempted, trials correct, reaction time), and GPB (non-dominant hand) predominantly with greater declines in performance after alcohol and alcohol-cannabis combined relative to placebo and/or cannabis. Cannabis appeared to affect mood and subjective experience, with minimal impact on cognitive performance. Alcohol appeared to impair cognitive and psychomotor performance, with minimal impact on mood and subjective experience. Acute effects of alcohol and cannabis combined were additive at most.


Assuntos
Cannabis , Alucinógenos , Analgésicos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Cognição , Método Duplo-Cego , Dronabinol/farmacologia , Etanol , Humanos , Desempenho Psicomotor
7.
Sci Rep ; 12(1): 6903, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484306

RESUMO

Replication of the eukaryotic genome requires the formation of thousands of replication forks that must work in concert to accurately replicate the genetic and epigenetic information. Defining replication fork-associated proteins is a key step in understanding how genomes are replicated and repaired in the context of chromatin to maintain genome stability. To identify replication fork-associated proteins, we performed iPOND (Isolation of Proteins on Nascent DNA) coupled to quantitative mass spectrometry in Drosophila embryos and cultured cells. We identified 76 and 278 fork-associated proteins in post-MZT embryos and Drosophila cultured S2 cells, respectively. By performing a targeted screen of a subset of these proteins, we demonstrate that BRWD3, a targeting specificity factor for the DDB1/Cul4 ubiquitin ligase complex (CRL4), functions at or in close proximity to replication forks to promote fork progression and maintain genome stability. Altogether, our work provides a valuable resource for those interested in DNA replication, repair and chromatin assembly during development.


Assuntos
Replicação do DNA , Drosophila , Animais , Células Cultivadas , Cromatina/genética , Drosophila/genética , Instabilidade Genômica , Espectrometria de Massas/métodos
8.
Exp Clin Psychopharmacol ; 30(6): 1036-1049, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35049320

RESUMO

Alcohol and cannabis are the two most commonly found intoxicating substances in fatally injured drivers. Epidemiological studies have demonstrated that the use of alcohol or cannabis can lead to an increase in the risk of a motor vehicle collision. Reducing the risks associated with driving under the influence of alcohol or cannabis is achieved partly through roadside detection of breath alcohol concentrations (BrAC) or blood delta-9-tetrahydrocannabinol (THC) levels. The purpose of the present review is to compile the laboratory studies on the combined effects of alcohol and cannabis on simulated driving as well as those evaluating combinations of these drugs on BrAC or blood THC. Given that driving can be affected by a number of cognitive processes, the literature on the cognitive effects of combinations of alcohol and cannabis is also reviewed, along with a discussion of a potential additive effect on the subjective qualities of these drugs. In sum, it is concluded that alcohol and cannabis have additive effects on driving skills, cognition and subjective effects. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Assuntos
Condução de Veículo , Cannabis , Alucinógenos , Dronabinol/farmacologia , Concentração Alcoólica no Sangue , Alucinógenos/farmacologia , Etanol/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Cognição
9.
Psychopharmacology (Berl) ; 239(5): 1263-1277, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33544195

RESUMO

RATIONALE: With alcohol and cannabis remaining the most commonly detected drugs in seriously and fatally injured drivers, there is a need to understand their combined effects on driving. OBJECTIVES: The present study examined the effects of combinations of smoked cannabis (12.5% THC) and alcohol (target BrAC 0.08%) on simulated driving performance, subjective drug effects, cardiovascular measures, and self-reported perception of driving ability. METHODS: In this within-subjects, double-blind, double-dummy, placebo-controlled, randomized clinical trial, cannabis users (1-7 days/week) aged 19-29 years attended four drug administration sessions in which simulated driving, subjective effects, cardiovascular measures, and whole blood THC and metabolite concentrations were assessed following placebo alcohol and placebo cannabis (<0.1% THC), alcohol and placebo cannabis, placebo alcohol and active cannabis, and alcohol and active cannabis. RESULTS: Standard deviation of lateral position in the combined condition was significantly different from the placebo condition (p < 0.001). Standard deviation of lateral position was also significantly different from alcohol and cannabis alone conditions in the single task overall drive (p = 0.029 and p = 0.032, respectively), from the alcohol alone condition in the dual task overall drive (p = 0.022) and the cannabis alone condition in the dual task straightaway drive (p = 0.002). Compared to the placebo condition, the combined and alcohol conditions significantly increased reaction time. Subjective effects in the combined condition were significantly greater than with either of the drugs alone at some time points, particularly later in the session. A driving ability questionnaire showed that participants seemed unaware of their level of impairment. CONCLUSION: Combinations of alcohol and cannabis increased weaving and reaction time, and tended to produce greater subjective effects compared to placebo and the single drug conditions suggesting a potential additive effect. The fact that participants were unaware of this increased effect has important implications for driving safety.


Assuntos
Condução de Veículo , Cannabis , Alucinógenos , Fumar Maconha , Analgésicos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Método Duplo-Cego , Dronabinol , Etanol/efeitos adversos , Alucinógenos/farmacologia , Humanos , Desempenho Psicomotor
10.
EMBO J ; 41(2): e105531, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34904718

RESUMO

Recessive gene mutations underlie many developmental disorders and often lead to disabling neurological problems. Here, we report identification of a homozygous c.170G>A (p.Cys57Tyr or C57Y) mutation in the gene coding for protein disulfide isomerase A3 (PDIA3, also known as ERp57), an enzyme that catalyzes formation of disulfide bonds in the endoplasmic reticulum, to be associated with syndromic intellectual disability. Experiments in zebrafish embryos show that PDIA3C57Y expression is pathogenic and causes developmental defects such as axonal disorganization as well as skeletal abnormalities. Expression of PDIA3C57Y in the mouse hippocampus results in impaired synaptic plasticity and memory consolidation. Proteomic and functional analyses reveal that PDIA3C57Y expression leads to dysregulation of cell adhesion and actin cytoskeleton dynamics, associated with altered integrin biogenesis and reduced neuritogenesis. Biochemical studies show that PDIA3C57Y has decreased catalytic activity and forms disulfide-crosslinked aggregates that abnormally interact with chaperones in the endoplasmic reticulum. Thus, rare disease gene variant can provide insight into how perturbations of neuronal proteostasis can affect the function of the nervous system.


Assuntos
Deficiências do Desenvolvimento/genética , Retículo Endoplasmático/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Proteostase , Adolescente , Adulto , Animais , Axônios/metabolismo , Axônios/patologia , Adesão Celular , Células Cultivadas , Criança , Citoesqueleto/metabolismo , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Crescimento Neuronal , Plasticidade Neuronal , Linhagem , Isomerases de Dissulfetos de Proteínas/metabolismo , Peixe-Zebra
11.
Nat Chem Biol ; 18(4): 360-367, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34857958

RESUMO

Cancer cells have long been recognized to exhibit unique bioenergetic requirements. The apoptolidin family of glycomacrolides are distinguished by their selective cytotoxicity towards oncogene-transformed cells, yet their molecular mechanism remains uncertain. We used photoaffinity analogs of the apoptolidins to identify the F1 subcomplex of mitochondrial ATP synthase as the target of apoptolidin A. Cryogenic electron microscopy (cryo-EM) of apoptolidin and ammocidin-ATP synthase complexes revealed a novel shared mode of inhibition that was confirmed by deep mutational scanning of the binding interface to reveal resistance mutations which were confirmed using CRISPR-Cas9. Ammocidin A was found to suppress leukemia progression in vivo at doses that were tolerated with minimal toxicity. The combination of cellular, structural, mutagenesis, and in vivo evidence defines the mechanism of action of apoptolidin family glycomacrolides and establishes a path to address oxidative phosphorylation-dependent cancers.


Assuntos
Leucemia , Neoplasias , Trifosfato de Adenosina , Humanos , Leucemia/tratamento farmacológico , Macrolídeos , ATPases Mitocondriais Próton-Translocadoras/química , Neoplasias/tratamento farmacológico
12.
Psychol Addict Behav ; 35(5): 536-552, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34081489

RESUMO

Objective: The prevalence of co-use of alcohol and cannabis is increasing, particularly among young adults. Sex differences in the effects of alcohol alone and cannabis alone have been observed in animals and humans. However, sex differences in the acute pharmacological effects of cannabis combined with alcohol have not yet been studied. In young adults, aged 19-29 years, we aimed to examine sex differences following an intoxicating dose of alcohol (target 0.08% breath alcohol content) combined with a moderate dose of cannabis (12.5% Δ9-tetrahydrocannabinol; THC) using an ad libitum smoking procedure. Method: Using a within-subjects design, 28 regular cannabis users (16 males; 12 females) received in random order: (a) placebo alcohol and placebo cannabis, (b) active alcohol and placebo cannabis, (c) placebo alcohol and active cannabis, and (d) active alcohol and active cannabis. Blood samples for THC were collected and measures of vital signs, subjective drug effects, and cognition were collected. Results: In the alcohol-cannabis combined condition, females smoked significantly less of the cannabis cigarette compared to males (p < .001), although both sexes smoked similar amounts in the other conditions. There was minimal evidence that females and males differed in THC blood concentrations, vitals, subjective effects, or cognitive measures. Conclusions: In the alcohol-cannabis combined condition, females experienced the same acute pharmacological and subjective effects of alcohol and cannabis as males, after smoking less cannabis, which has potential implications for informing education and policy. Further research is warranted on sex differences in cannabis pharmacology, as well as the combined effects of alcohol and cannabis. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Assuntos
Etanol , Fumar Maconha , Caracteres Sexuais , Adulto , Consumo de Bebidas Alcoólicas/epidemiologia , Método Duplo-Cego , Etanol/sangue , Etanol/farmacologia , Feminino , Humanos , Masculino , Fumar Maconha/sangue , Fumar Maconha/epidemiologia , Adulto Jovem
13.
J Biol Chem ; 296: 100719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33933451

RESUMO

Peripheral myelin protein 22 (PMP22) folds and trafficks inefficiently, with only 20% of newly expressed protein trafficking to the cell surface. This behavior is exacerbated in many of the mutants associated with Charcot-Marie-Tooth disease, motivating further study. Here we characterized the role of N-glycosylation in limiting PMP22 trafficking. We first eliminated N-glycosylation using an N41Q mutation, which resulted in an almost 3-fold increase in trafficking efficiency of wildtype (WT) PMP22 and a 10-fold increase for the severely unstable L16P disease mutant in HEK293 cells, with similar results in Schwann cells. Total cellular levels were also much higher for the WT/N41Q mutant, although not for the L16P/N41Q form. Depletion of oligosaccharyltransferase OST-A and OST-B subunits revealed that WT PMP22 is N-glycosylated posttranslationally by OST-B, whereas L16P is cotranslationally glycosylated by OST-A. Quantitative proteomic screens revealed similarities and differences in the interactome for WT, glycosylation-deficient, and unstable mutant forms of PMP22 and also suggested that L16P is sequestered at earlier stages of endoplasmic reticulum quality control. CRISPR knockout studies revealed a role for retention in endoplasmic reticulum sorting receptor 1 (RER1) in limiting the trafficking of all three forms, for UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1) in limiting the trafficking of WT and L16P but not N41Q, and calnexin (CNX) in limiting the trafficking of WT and N41Q but not L16P. This work shows that N-glycosylation is a limiting factor to forward trafficking PMP22 and sheds light on the proteins involved in its quality control.


Assuntos
Proteínas da Mielina/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Glicosilação , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Proteínas da Mielina/química , Proteínas da Mielina/genética , Conformação Proteica , Transporte Proteico
14.
J Cell Sci ; 134(5)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622798

RESUMO

The age-old saying, seeing is believing, could not be truer when we think about the value of imaging interactions between epithelial cells and bacterial pathogens. Imaging and culturing techniques have vastly improved over the years, and the breadth and depth of these methods is ever increasing. These technical advances have benefited researchers greatly; however, due to the large number of potential model systems and microscopy techniques to choose from, it can be overwhelming to select the most appropriate tools for your research question. This Review discusses a variety of available epithelial culturing methods and quality control experiments that can be performed, and outlines various options commonly used to fluorescently label bacterial and mammalian cell components. Both light- and electron-microscopy techniques are reviewed, with descriptions of both technical aspects and common applications. Several examples of imaging bacterial pathogens and their interactions with epithelial cells are discussed to provide researchers with an idea of the types of biological questions that can be successfully answered by using microscopy.


Assuntos
Infecções Bacterianas , Interações Hospedeiro-Patógeno , Animais , Bactérias , Células Epiteliais , Microscopia
15.
Mol Cell Proteomics ; 20: 100008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33581410

RESUMO

Thyroglobulin (Tg) is a secreted iodoglycoprotein serving as the precursor for triiodothyronine and thyroxine hormones. Many characterized Tg gene mutations produce secretion-defective variants resulting in congenital hypothyroidism. Tg processing and secretion is controlled by extensive interactions with chaperone, trafficking, and degradation factors comprising the secretory proteostasis network. While dependencies on individual proteostasis network components are known, the integration of proteostasis pathways mediating Tg protein quality control and the molecular basis of mutant Tg misprocessing remain poorly understood. We employ a multiplexed quantitative affinity purification-mass spectrometry approach to define the Tg proteostasis interactome and changes between WT and several congenital hypothyroidism variants. Mutant Tg processing is associated with common imbalances in proteostasis engagement including increased chaperoning, oxidative folding, and engagement by targeting factors for endoplasmic reticulum-associated degradation. Furthermore, we reveal mutation-specific changes in engagement with N-glycosylation components, suggesting distinct requirements for 1 Tg variant on dual engagement of both oligosaccharyltransferase complex isoforms for degradation. Modulating dysregulated proteostasis components and pathways may serve as a therapeutic strategy to restore Tg secretion and thyroid hormone biosynthesis.


Assuntos
Hipotireoidismo Congênito/metabolismo , Tireoglobulina/metabolismo , Linhagem Celular , Hipotireoidismo Congênito/genética , Humanos , Mutação , Mapas de Interação de Proteínas , Proteômica , Proteostase , Espectrometria de Massas em Tandem , Tireoglobulina/genética
16.
Acta Neuropathol Commun ; 9(1): 21, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541434

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive fatal neurodegenerative disease that affects motoneurons. Mutations in superoxide dismutase 1 (SOD1) have been described as a causative genetic factor for ALS. Mice overexpressing ALS-linked mutant SOD1 develop ALS symptoms accompanied by histopathological alterations and protein aggregation. The protein disulfide isomerase family member ERp57 is one of the main up-regulated proteins in tissue of ALS patients and mutant SOD1 mice, whereas point mutations in ERp57 were described as possible risk factors to develop the disease. ERp57 catalyzes disulfide bond formation and isomerization in the endoplasmic reticulum (ER), constituting a central component of protein quality control mechanisms. However, the actual contribution of ERp57 to ALS pathogenesis remained to be defined. Here, we studied the consequences of overexpressing ERp57 in experimental ALS using mutant SOD1 mice. Double transgenic SOD1G93A/ERp57WT animals presented delayed deterioration of electrophysiological activity and maintained muscle innervation compared to single transgenic SOD1G93A littermates at early-symptomatic stage, along with improved motor performance without affecting survival. The overexpression of ERp57 reduced mutant SOD1 aggregation, but only at disease end-stage, dissociating its role as an anti-aggregation factor from the protection of neuromuscular junctions. Instead, proteomic analysis revealed that the neuroprotective effects of ERp57 overexpression correlated with increased levels of synaptic and actin cytoskeleton proteins in the spinal cord. Taken together, our results suggest that ERp57 operates as a disease modifier at early stages by maintaining motoneuron connectivity.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/prevenção & controle , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Eletromiografia , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Denervação Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Junção Neuromuscular/metabolismo , Proteômica , Medula Espinal/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
17.
Exp Cell Res ; 399(1): 112417, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301765

RESUMO

The endoplasmic reticulum (ER), responsible for processing approximately one-third of the human proteome including most secreted and membrane proteins, plays a pivotal role in protein homeostasis (proteostasis). Dysregulation of ER proteostasis has been implicated in a number of disease states. As such, continued efforts are directed at elucidating mechanisms of ER protein quality control which are mediated by transient and dynamic protein-protein interactions with molecular chaperones, co-chaperones, protein folding and trafficking factors that take place in and around the ER. Technological advances in mass spectrometry have played a pivotal role in characterizing and understanding these protein-protein interactions that dictate protein quality control mechanisms. Here, we highlight the recent progress from mass spectrometry-based investigation of ER protein quality control in revealing the topological arrangement of the proteostasis network, stress response mechanisms that adjust the ER proteostasis capacity, and disease specific changes in proteostasis network engagement. We close by providing a brief outlook on underexplored areas of ER proteostasis where mass spectrometry is a tool uniquely primed to further expand our understanding of the regulation and coordination of protein quality control processes in diverse diseases.


Assuntos
Retículo Endoplasmático/metabolismo , Mapas de Interação de Proteínas/fisiologia , Proteômica/métodos , Proteostase/fisiologia , Animais , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ligação Proteica , Dobramento de Proteína , Proteoma/análise , Proteoma/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
18.
Cannabis Cannabinoid Res ; 5(3): 191-196, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32923656

RESUMO

Anxiety disorders have the highest lifetime prevalence of any mental illness worldwide, leading to high societal costs and economic burden. Current pharmacotherapies for anxiety disorders are associated with adverse effects and low efficacy. Cannabidiol (CBD) is a constituent of the Cannabis plant, which has potential therapeutic properties for various indications. After the recent legalization of cannabis, CBD has drawn increased attention as a potential treatment, as the majority of existing data suggest it is safe, well tolerated, has few adverse effects, and demonstrates no potential for abuse or dependence in humans. Pre-clinical research using animal models of innate fear and anxiety-like behaviors have found anxiolytic, antistress, anticompulsive, and panicolytic-like effects of CBD. Preliminary evidence from human trials using both healthy volunteers and individuals with social anxiety disorder, suggests that CBD may have anxiolytic effects. Although these findings are promising, future research is warranted to determine the efficacy of CBD in other anxiety disorders, establish appropriate doses, and determine its long-term efficacy. The majority of pre-clinical and clinical research has been conducted using males only. Among individuals with anxiety disorders, the prevalence rates, symptomology, and treatment response differ between males and females. Thus, future research should focus on this area due to the lack of research in females and the knowledge gap on sex and gender differences in the effectiveness of CBD as a potential treatment for anxiety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA